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METHOD FOR PID-TUNING VIA FEEDBACK CONTROL SYSTEM
POLE PLACEMENT

Pole placement is the only PID-tuning technic that allows one to obtain a control system with desired, and, moreover,

highly predictable performance and control quality. Number of controller tuning parameters is equal to number of
poles closed-loop poles it can precicely place, so that PID-controller can place exactly three poles, and PI- can place
only two. For this reason Pl-controller is best used with first-order processes (second-order closed loop system), and
PID-controller with second-orded ones (third-order closed loop system). However, many processes have higher order
than two, and still are controlled with PID-controllers. To tune it using pole placement techniques, it is necessary to
consider only dominant poles, which affect performance of the system to the greatest extent. First, it is necessary to

study a PI-controller with a second-order process, which is the most basic case. Tuning is performed using global
optimization methods to fit dominant poles of a tuned system to dominant poles of a reference system.
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The Problem Statement. PID-controllers are the most widely used type of controller in industrial plants control
systems due to their simplicity and good performance. Many different approaches for tuning of PID-controller, i.e.,
properly choosing controller parameters, are theoretically studied. Many of them are empirical and heuristic, like
Ziegler-Nichols tuning rules and their numerous extensions, or frequency response shaping. However, the only way
that might guarantee desired performance of the system is pole placement. If all the poles have rather large negative
real part, the rise time of the system is then bounded by a desired value, and if in addition to that imaginary parts of
complex-conjugate poles are rather small, the damping ratio and settling time will be close to desired.

There are many ways to optimize system behaviour, including integrated criteria like integrated error (IE),
integrated squared error (ISE) and more complicated functions. On the other hand, it is possible to fit poles directly,
using weighted sum of squared distances between corresponding poles of reference and real systems:
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where 577 is j-th pole of the real system, Si51 is j-th pole of the reference system, ReRe and ImIm stands for real
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part and imaginary part of a complex number respectively, ™ ™ and "j "j are nonnegative real weighing

coefficients, 17 is the number of poles of the system. This criterium might be turned into zero if all poles are fitted
perfectly, of just minimized if some poles are impossible to fit simultaneously.

Benefits of fitting poles directly are mainly connected with specific objectives which may be set for the system,
e.g., smaller raising time might be preferred in spite of smaller damping ratio or larger overshoot, which cause ISE
criterion to indicate worse results in that case.

Analysis of previous research. Problem of PI- and PID-controller synthesis remains relevant for many decades.
Results in the field are diverse.

Description of wide variety of conventional methods and system structures for PID-control may be found
in book [1].

In paper [2] a coefficient-fitting approach is examined both for continuous and discrete-time closed-loop systems
with PID-controller. Fitting is performed for overdetermined equation systems for coefficients of a reference and
tuned systems, modified to guarantee response stability. The least-squares method was utilized for optimal solution
search. However, results may be not optimal in sense of system poles closeness to reference system poles.
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In paper [3] a generalized PID-controller was synthesized for a control system with two feedback loops, outer
and a nested one. The criterium for optimization was minimum of integrated squared response plus weighted squared
control signal in case of system response to delta impulse input. Although systems with such structure have good
performance, such controller includes several integrators and differentiators and is considerable harder to implement,
and might not be necessary for industrial processes.

The approach with generalized PID-controller is further developed in research [4], where problem is posed as
optimal open-loop zero placement. Like in other works of these authors, impulse response tracking was applied for
tuning. In [5] closed-loop pole-placement is chosen instead of open-loop zero placement. In addition, a prefilter is
utilized. In all papers [2 — 5] much analytical computation is performed before applying numeric optimization,
including some consideration of state-controllers and state-observers, which complicates analysis.

Nowadays, optimization-based techniques for PID-tuning are the object of active research.

An extensive theoretical study of least-squares optimal pole placement for linear time-invariant systems in state-
space representation was done in [6]. As optimality criterium a matrix function was proposed. Some theorems were
proved on global optimum existence and convergence of optimization. However, no physical meaning of such
functions was introduced, and the dynamics of presented optimal systems also was out of scope.

The idea of optimal dominant pole placement using plain PID-controller was compared with classical Ziegler-
Nichols tuning rules in case of system with time delay in article [7]. The criterium was integrated absolute error
minimum, and the results were far better than obtained using Ziegler-Nichols method.

For a process, for which no mathematical model was developed, an iterative step response shaping method was
proposed in [8].

Analytical eigenvalues placement methods for a process with known state space representation are also
developed. For example, in [9] one specific method utilizing Moore’s algorithm for optimal system eigenvalues
placement is described and compared to its alternatives. The optimization objective was to minimize system
sensitivity to perturbations, so that closed-loop response was both swift and robust.

The purpose of this article is to develop an implementation of optimal pole placement PID-controller tuning and
to test it on several processes. Results should be examined for qualitative differences for different types of processes.

Presentation of the main material.

In the current paper, only second-order processes are considered, so that the process transfer function is
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where KK is static gain, —A3—4;1 and —42—43 are stable poles, either real or complex-conjugate. PID-controller
transfer function has form
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where PP 1T and DD are proportional, integral and derivative gains respectively. Closed loop system has transfer
function
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Thus, the characteristic polynomial of the system is
S+ A+ +D) 52+ (LWL +P)+I =(s+5)(5+ 53)(5+ 53) %)

Roots of such a polynomial are fully determined by is coefficients, so that using PID-controller allows one to fit
all poles of the system perfectly. In addition to that, a closed-loop system will always be minimal phase if only all
PID-controller parameters are positive, which is fairly easy to guarantee. This implies that using optimal poles
placement for PID and second-order system must result in an equality of corresponding poles. However, for PI-
controller the second coefficient af a nalvnamial may not he affected by tuning, so that only two poles might be tuned.
Below, we consider that 51 = 5z = 5351 = 53 = 53 j.e., —51751 is the dominant pole.

It is expected, that PID-tuning for second-order process is weakly dependent on weighing coefficients in objective
function. Unlikely behaves system with PI-controller. As far as PI-controller cannot place all three poles perfectly,
including non-dominating pole in the objective function is likely to make results even worse. For this reason, some

5]  —



Bulletin of National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institutey
Series «Chemical Engineering, Ecology and Resource Savingy». 2022. No 4 (21)

roots must be excluded. For third-order system there are three possible relative poles placement: three real poles,
dominating real pole, dominating complex-conjugate poles. This might affect performance of the method with
different weighing coefficients, so that we examine different combinations to compare results.

Now let us take a closer look on the algorithm itself. It is well known, that roots of a polynomial are unstable function
of its coefficients, i.e., small changes in polynomial coefficients may result in a dramatically changed roots, including
both numeric values and structure (number of real and complex-conjugate roots etc.). Due to this, zero-order numeric
optimization method must be used to avoid computational problems in points where derivative of the objective function
is undefined or infinite. To set up correspondence between two sets of poles, we used sorting in descending order by real
parts of the roots. To avoid getting stuck next to local minima, we use local optimization with multiple starting points,
uniformly distributed in some square or cubic segment of two- or three-dimensional space of tuning parameters
respectively. To make code more flexible, pole exclusion is done using zero weighing coefficients in objective function.
Optimization is performed using a Matlab routine. Code is placed in the cloud and may be accessed via URL
https://drive.google.com/drive/folders/1hYkY3Xcjxb8tISRcEfRZnoNksqKp-DsC?usp=sharing.

Six different processes were examined: three aperiodic (with real poles) and three oscillatory (with complex-
conjugate poles):

1
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Nine sets of desired poles were set, three for each type of pole set. To define a reference system, we calculated a
PID-controller for each process and reference poles combination. Such PID-controller is aimed to fit all three poles
of the reference systems. The key difference of such implementation of a reference system is existence of two zeros,
which also impact dynamics of the system.

Table 1 — Poles of a reference closed-loop system

Nuinbe Pole set type Pole values

1 -0,2-0,2j -0,2+0,2 -1

2 Complex-conjugate dominating poles -0,5-0,1j -0,5+0,1j -0,7

3 -0,7-0,3j -0,7+0,3j -1,1

4 -0,25 -0,6 - 0,1j -0,6 +0,1j
5 Real dominating pole -0,45 -0,7-0,2j -0,7+ 0,25
6 -0,5 -0,1 - 0,3j -0,1 +0,3j
7 -0,3 -0,4 -0,8

8 Three real poles -0,5 -0,8 -1

9 -0,2 -0,4 -0,6

The following four different sets of weighing coefficients were defined for optimization. First set takes into
account only dominating pole (both real and imaginary part), so does the second set but for two right-most poles. The
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third takes into account all poles equalizing their importance. In the fourth set, dominating pole has larger coefficient

for both real and imaginary part.
Table 2 — Weighing coefficients sets

Coefficie
nt set number ki ki™ k3 k3 k3e k{™
1 1 1 0 0 0 0
2 1 1 1 1 0 0
3 1 1 1 1 1 1
4 4 B 1 1 1 1

Some results of data visualization are presented on the figures below. Main attention is paid to comparison
between tuning quality for different objects, different controllers and weighing types. Pole placement on the complex
plane is shown for reference and real systems, surface and volume plots for objective function,
step and impulse response plots. Complete set of generated data may be accessed via URL
https://drive.google.com/drive/folders/IMFIm7Zd7Y 6KNpcfkolOIEGERzqcQy2wM ?usp=sharing.
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Fig. 1 — Pole placement, aperiodic process pl with PI-controller, target pole set 1, weighing coefficients 1
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Fig. 2 — Step and impulse response, aperiodic process p1 with PI-controller,
target pole set 1, weighing coefficients 1
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Fig. 3 — Pole placement, oscillatory process p4 with PI-controller, target pole set 1, weighing coefficients 1
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Fig. 4 — Step and impulse response, oscillatory process p4 with PI-controller,
target pole set 1, weighing coefficients 1
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Fig. 6 — Objective function surface plot in small neighborhood of the global optimum,
aperiodic process pl with PI-controller, target pole set 1, weighing coefficients 1

©
|
/

o
n
&)
L

o
»
/

0.35

Objective function

0.046

0.032 0.042

0.03
Integral gain 0.028 0.036

0.038
Proportional gain

Fig. 7 — Objective function surface plot in small neighborhood of the global optimum,
oscillatory process p4 with PI-controller, target pole set 1, weighing coefficients 1

As it can be seen from figures, poles for both systems are equal for naked eye, but step responses indicate a small
difference between them for processes pl and p4. It may be explained by computation error. Surface plot on fig. 5 is
typical for PI-controller tuning problem solved here, and is varying mostly in a close neighborhood of the global
optimum. That means, that all optimal PI-controller tunings have rather small proportional and integral gains,
regardless of existence of single or multiple local minima. For two examples given above, the appearance of the
surface is mostly the same in qualitative sense, still objective function values are slightly different, and tuning
parameters, exactly proportional gain, are significantly different. In the same time, not all processes may be tuned for
fitting this dominating poles pair so well.
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Fig. 8 — Pole placement, aperiodic process p2 with PI-controller, target pole set 1, weighing coefficients 1
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Fig. 9 — Step and impulse response, aperiodic process p2 with PI-controller,
target pole set 1, weighing coefficients 1
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Fig. 10 — Pole placement, oscillatory process p4 with PI-controller, target pole set 1, weighing coefficients 1
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Fig. 11 — Step and impulse response, oscillatory process p4 with PI-controller,
target pole set 1, weighing coefficients 1

Process p2 was tuned in the way the system has three poles with equal real parts, which is a boundary situation
when further moving of poles to the left is no more possible. Such relative location of poles is actually the most
common in our results for PI-controllers. A similar location is shown on fig. 10 for process p4. Unlike tuning for p2
where dominating real part is fitted perfectly, oscillatory object could not reach such pole placement and got stuck on
poles with real part slightly above -0,1. However, imaginary parts of both pole sets are the same. Fig. 9 and fig. 11
illustrates how much better is step response of system with aperiodic process than with an oscillatory one.

Not only imaginary parts affect the tunability of the system, but also position of recessive poles of the process
itself. Consider fig. 12 to fig. 15 with tuning results for process p1 and pole set 2 and weighing coefficient sets 1, 2,
3 and 4 respectively. The worst result corresponds to using all three poles with the same weights. This causes
dominating poles of the real system to be located to the right from their possible location, where they take place for
weighing coefficient sets 2 and 4. For all systems with weighing coefficient set 3 a similar result is reached: poles are
placed like in the reference system, but shifted to the right. Sometimes this shift produces unstable poles. For this
reason, we consider equal poles weighing much less useful.

Comparing results for weights 1, 2 and 4, we found out that, surprisingly, complex-conjugate poles for weights
4 have the smallest value of imaginary part, that is approximately equal to imaginary part of reference poles. For
weights 1 and 2 imaginary part is deviating from the desired value for an unknown reason, especially for weights 1.
Simultaneously, we can conclude that real part of system poles for process 1 with PI-controller is located in the
segment they are located. Such limitation is observed for all analyzed systems with different real parts.
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Fig. 12 — Pole placement, aperiodic process pl with PI-controller, target pole set 2, weighing coefficients 1
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Fig. 13 — Pole placement, aperiodic process p1 with PI-controller, target pole set 2, weighing coefficients 2
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Fig. 14 — Pole placement, aperiodic process p1 with PI-controller, target pole set 2, weighing coefficients 3
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Fig. 15 — Pole placement, aperiodic process p1 with PI-controller,
target pole set 2, weighing coefficients 4
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Also, we consider that found tuning limit for p1 has greater real part, than real part of initial system poles (taking
the sign into account). On the other hand, limiting real part for process p2 has smaller real part, than real part of the
dominating pole. This led us to the statement, that location recessive poles of the process are important if a controller
of low order is to be tuned. Smaller real parts of recessive poles give more flexibility for closed system dominant pole
fitting. These four tuning problems are also different in sense of objective function in the neighborhood of the local
optimum. Figures from 16 to 19 illustrate this. It means, that for some reason optimization problems for weighing
coefficient sets x and y are similar, but rather different for z and w.
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Fig. 16 — Objective function surface plot in small neighborhood of the global optimum,
aperiodic process pl with PI-controller, target pole set 2, weighing coefficients 1
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Fig. 17 — Objective function surface plot in small neighborhood of the global optimum,
aperiodic process pl with PI-controller, target pole set 2, weighing coefficients 2
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Fig. 18 — Objective function surface plot in small neighborhood of the global optimum,
aperiodic process pl with PI-controller, target pole set 2, weighing coefficients 3
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Fig. 19 — Objective function surface plot in small neighborhood of the global optimum,
aperiodic process pl with PI-controller, target pole set 2, weighing coefficients 4

Also, pole placement was applied to systems with PID-controller in order to test this method for tuning a
controller with unlimited possibilities and limited information about reference system poles. Consider fig. 20 and fig.
21. As it was expected, both weighing coefficient sets are suitable to fit the real dominant pole. Although weights 2
were also supposed to fit both recessive poles, they did not. To examine optimization segment on multiple local
minima, the volume plot for objective function was created (fig. 22 and fig. 23) for two different neighborhoods of
the found optimum. However, nothing was found by eye, so we are unable to explain such behaviour now. It is
probable that a pit both around the local optimum and around global optimum is rather shallow so that it is impossible
to see on the plot. Similar nonconformity had arisen also for reference system 5 with all processes. Although tuned
systems must have better performance, this is not guaranteed without fitting all poles which were meant to be fit.

For all other systems weights 3 and 4 resulted in perfect poles coincidence, as it was expected.

It is worth noting, that volume plot for objective function depicted on fig. 22 is as typical for PID-controller
tuning, as surface from fig. 5 is typical for PI-controller tuning problems. Plots in data repository seems to be different
because plot shown here was rotated for better visibility of its curly structure in the neighborhood of the extremum.
Plots on smaller scales differs as well as surfaces for PI-controller do.
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Fig. 20 — Pole placement, oscillatory process p4 with PID-controller, target pole set 4, weighing
coefficients 1
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Fig. 21 — Pole placement, oscillatory process p4 with PID-controller, target pole set 4, weighing
coefficients 2
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Fig. 22 — Objective function volume plot for system from fig. 17 in the entire optimization space segment
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Fig. 23 — Objective function volume plot for system from fig. 17 in the close neighborhood of the optimum

Conclusions. A new method for pole-placement PID-tuning was proposed. For a system with PID-controller and
a second-order process, it is capable of reaching full coincidence of references and real system poles. For some reason,
this objective was not reached using dominating and one of complex-conjugate recessive poles

For PI-controller tuning, it allows to fit a dominant pole or a dominant pair of complex-conjugate poles with
satisfying performance of the resulting system. However, if reference poles are too fast (located too far from the
imaginary axis), it may be impossible to tune a PI-controller to fit even a single pole with the corresponding desired
one. In this case, all three poles of tuned system have the same real part, but imaginary part of complex-conjugate
poles may vary inside rather wide bounds. The best fit of imaginary part of such poles is reached, if all poles of the
reference system have non-zero weighing coefficients, but dominant poles have larger weight. It was empirically
shown that recessive pole of an aperiodic process can significantly affect the limitation imposed on real part of closed-
loop system poles. The smaller is real part of the recessive pole, the better tunability system has.
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The worst performance of the method for PI-controller is observed in case of counting all reference system poles
with equal coefficients. For this weighing type, relative location of tuned system poles is similar to relative location
of reference system poles, but all tuned poles are shifted to the right. This results in bad system performance with
large raising time, or even in system instability due to a pole in the right half-plane arisen.

Objective function for both PI- and PID-controller tuning problem was visualized. All plots for PI-tuning
problems are similar on large scales, but differ on small scales. Volume plots for PID-controllers look alike. These
plots play rather illustrative role, still they might turn out to be theoretically important in the future.

Prospects of further research. In future research, the real-part-limit for PI-controller tuning for second order
systems should be analyzed depending on process parameters. Analogic work must be done for high-order systems
for tuning both PI- and PID-controllers. For an arbitrary structure of reference system poles, it is necessary to derive
the best coefficient set, which will result in a system with dynamics as close to the desired as possible. The latter
problem appears to be an optimization problem itself, so that optimization methods might be applied to it. In the
current study, margins for optimization segment of the tuning parameter space were chosen arbitrarily. For more
complex systems with different coefficients, is necessary to develop method for choosing a segment of minimal size,
so that number of starting points for optimization could be decreased to minimum, resulting in faster computations.
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Anatolii Zhuchenko, Redrikh Putiatin

METO/| HAJJAIITYBAHHSA HNIA-PETIYJATOPA 3A 3AJAHUM PO3TAIIYBAHHSM IOJIIOCIB
CUCTEMHU KEPYBAHHSA

Posmiwenns nonocie 3aMKHeHOI cucmemu 2apammye OmMpumManHs nompionux ounamiunux npoyecis. Kinbkicmo
3MIHHUX Napamempie pe2yiamopa 6UHA4ae KilbKiCMb NOIOCI8, AKI 3 1020 BUKOPUCAHHAM MONCIUBO POIMICIMUMU.
3uauna KineKicms NpOMUCTIOBUX NpOYecis, AKi ONUCAHI MoOenamu NopAoKy, euwge Opyzozo, Kepyiomwvca I11/]-
pezyramopamu. Yepe3 ye nompioHo SUKOPUCTNOBYBAMU MEeMOOU PO3MieHHs OOMIHAHMHUX NONIOCI8 3AMKHEHOI
cucmemu. Lle ckraono 3pobumu aHanimuyHo, Momy OOYiIbHO BUKOPUCTOBY8AMU YUCTIO8Y ONMUMI3AYIIO.

Cucmema agmomamuuno2o Kepy8anHsi NpeoCcmasieHa 00 €Kmom Opy2020 NOpsioKy 3 6i00MOI0 NepedasaibHOIO
@yHKyicto il pecyrsimopom i3 Hegidomumu napamempamu. Beooeo docnioscerno wicme 06 'exmie sk i3 I1-, mak i 3
HI/]-pecyissimopom. [us HaiawimyeamnHs 6UKOpUCMAHO 0Oe3yMo8Hy OazamosumipHy onmumizayiio. 3adauero
onmumizayii € MiHIMI3ayil 36a%ceHol cyMu 8i0Cmanell Midc GI0N0BIOHUMU ROTIOCAMU HATIAWMOBY8AHOL MA 6ANCAHOT
cucmem. 3 BUKOPUCMAHHAM YUCTIO8UX Memodis cepedosuuia Matlab 6yno nobyoosano epagixu yinboeoi ynkyii 0ns
HI-pezynsmopa (nosepxus) u I[1l/[-pecyrsmopa (habip niniti pisHs, Wo 3aN08HIOIOMb MPUSUMIDHUL NPOCMID).
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Hanawmysanus cucmemu 3 I[11/[-pezynamopom y 6inbuiocmi 6unaokis 0038011 MOYHO 8IOMBOPUMYU 3A0AH] NOJIOCU.
Bunamku cmanogname 6unaoku 3 HAIAWMYBAHHS 3d NAPOIO KOMNAEKCHO-CAPANCEHUX OOMIHAHMHUX NOAIOCI8 OJis
BUNAOKY, KOJU HEOOMIHAHMHUL NOTIOC OYI0 NPOICHOPOBAHO.

Ha npomusaey Ill][-pecynamopy, suxopucmanns Ill-pecyiamopa Haxiadae nomimui 0OMediCeHHS HA MHOJICUHY
00CAHCHUX  NONIOCT6 3aMKHeHOI cucmemu. [[na 6y0b-1k020 00°€kmy iCHYE HUdICHA Medca OIICHOI 4acmuHu
OOMIHAHMHUX NONIOCIE, MOOMO ICHYE BEPMUKATLHA NPAMA, TI60PYY 8I0 AKOI nomocu cucmemu 3 I[1l-pecynisimopom ne
MOACYMb 3HAX00UmMUCs. Ilpu docsienenui yici medci 6Ci mpu ROJIOCU CUCHEMU 3HAX0OMbCSL HA OOHIU 6ePMUKAIbHI
npaAmil, mobmo marms 00HaKosy Oitichy yacmuny. Ilopocose snauenns OIICHOT YACMUHY 3ANEAHCUMDb IO NOTIOCIE
00 ’exmy. Hanpuxnao, 01 anepioouyno2o 06’ekmy 3 kpamuum noaocom -0,4 ys medxca mae npubausne 3HayeHHs -
0,27, a 015 nodibHo2o Koausanbho2o 06 ckmy 3 nomocamu -0,4-0,2j i -0,4+0,2j ys meonca 6ausvra oo -0,8.
Pezynomam nanawmysanis 3anedxicums i0 8a2osux xoe@iyienmis y yinbosit Qyukyii. Bpaxysanus nedominanmmnozo
NOMOCY 3 MAKUM CAMUM 8A208UM KOeDiyicHmMOoM, wjo il 0151 OOMIHAHMHUX ROIIOCI8, npu HarawimyeanHi I1I-pecyisamopa
npu3800UmMs 00 CYMMEBO20 NOSIPULEHHS pe3yibmamie. Bpaxysanns HeOOMIHAHMHO20 NOAIOCY 31 MEHWUM 6a208UM
KoeqhiyicHmom Moodice Oamu Kpauyi pe3yibmamu, HidiC HAAAUMy8aHHsl iutie 3a OOMIHAHMHUMU NOTOCAMU, A came HADIp
HOJIOCIB I3 MUMU CAMUM OUCHUMU YACTRUHAMU, ale 3 MEHUWUMU YAGHUMUL.

I'paghixu-nosepxni yinbosoi ynryii ona I1l-pecynisimopa 3 6y0b-2K020 NOEOHAHHS 00 '€KMY, NOIOCI6 OAXHCAHOT cucmemu
1l 8a206uUx KoeqhiyicHmie Yinbosoi GYHKYIL Ha MACUIMabax 6cbo20 NPOMINCKY ORMUMI3AYIL MArOMyb NOJIOHUL 6U2TAO i3
2N100aNbHUM MIHIMYMOM NOOIU3Y noYamKy Koopouram. Ha menwiux macuumabax euensio yux epagixie mosice Cymmeeo
BIOPISHAMUCSL 3/I€AHCHO 810 POZMAULYBAHHS NOIOCI8 00 ekmy. I pagixu modxcyms mamu po3pueu, 31amu (iHii, Ha AKUX
POo3pus mac noxiona yinboeoi Gyuxyii). Ilpome 0151 anepioOUUHUX i KOIUBATLHUX 00 €KMI8, OOMIHAHMMI NOTIOCU SIKUX
Maiomsb 00HAKOGE OTUCHI YACMUHU, YiNb08A YYHKYIA 8 OAUZLKOMY OKOML ONMUMYMY MAE NOOIOHI 3G 3068HIUHIM 8USTSIOOM
epagixu nonpu me, wo 3navenus napamempies I1l-pecyisamopa nomimmo iopi3HAIOMbCA.

Bizyanizayis mpusumipnozo nous 3uavenv yinbogoi ¢yuxyii 01 cucmem i3 IlJ]-pecynamopom nokasaia max camo
NOKA3ANA CXOXHCI MidHC cODOI0 pe3yibmamuy Ha 6eIUuKUX macuimaoax, ane 3i SHaYHUMU 8iOMIHHOCMAMUY 6 OIU3bKOMY
okoni onmumymy. I pagiku 011 anepiooudnux ma KOAUBAIbLHUX 00 €Kmid i3 0OHAKOBUMU OIUCHUMU UACUHAMU
OOMIHAHMHUX NONIOCI € NOOIOHUMUL.

Posenanymuii memoo Hanawmysanus pezyisamopie HuU3bK020 NOPAOKy 00360J5€ 00CAAMU POIMAULY8ANHHS NOTIOCIE
cucmemu i3 3a0aHUM MUNOM Pe2YISMOpaA, sIKe € OIUZLKUM 00 HAUKPAU020 3 YCIX MeOPeMUiIHO MONCTUBUX.

Kniouoei cnosa: nanawmysanns I11/]-pecynamopa, posmauiyganus nomocie, onmumizayis, Il-pezynsmop, cucmema
0pye020 nopsioKy
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