ДВОЙНОС Я. Г., к.т.н., ст. викл.; СОКОЛЬСЬКИЙ О. Л., к.т.н., доц.; ІВІЦЬКИЙ І. І., аспірант Національний технічний університет України «Київський політехнічний інститут»

УТОЧНЕНА МЕТОДИКА ОБРОБЛЕННЯ ЕКСПЕРИМЕНТАЛЬНИХ Даних капілярної віскозиметрії

Проаналізлвано течію рідини в циліндричному каналі з урахуванням її неньютонівської поведінки, запропоновано новий алгоритм і програму оброблення даних капілярної віскозиметрії з метою розрахунку параметрів моделі степеневої реологічної залежності.

Ключові слова: капілярна віскозиметрія, розплав полімеру, формувальний інструмент, математична модель.

© Двойнос Я. Г., Сокольський О. Л., Івіцький І. І., 2015.

Постановка проблеми та аналіз попередніх досліджень. Відомі методики [1, 2] оброблення експериментальних даних капілярної віскозиметрії з урахуванням неньютонівської поведінки полімерів, та

отримання їхніх реологічних параметрів базуються на рівнянні $Q = \frac{\pi n R^3}{3n+1} \left(\frac{R\Delta P}{2LK}\right)^{1/n}$, де R – радіус капіляра,

м; L – довжина каналу, м; Q – об'ємна витрата розплаву, м³/с; ΔP – перепад тиску за довжиною каналу, Па. Це рівняння має дві невідомі – K і n, тому під час двох експериментів визначають дві пари значень Q і ΔP , записують систему з двох рівнянь і розв'язують її, наприклад за допомогою пакета MathCAD. Невирішеною частиною проблеми є відсутність методики оброблення серії експериментів на капілярному віскозиметрі, що дозволяє одержати окремий розв'язок для кожного експерименту й загальний для їхньої серії.

Метою статті є дослідження течії неньютонівської рідини в циліндричному каналі з розробленням нового алгоритма й програми інженерного розрахунку її реологічних параметрів.

Виклад основного матеріалу. Рівняння рівноваги елементарного об'єму розплаву в перерізі циліндричного каналу (рис. 1): $F_1 - F_2 - F_3 = 0$, де $F_1 = P(z)\pi R$ і $F_2 = \left[P(z) + \frac{dP}{dz}dz\right]pR^2$ – сили від нормальних напружень, спричинених гідростатичним тиском, $F_3 = \tau_{zp}|_{p=R} 2\pi R dz$ – сила від дотичного напруження на стінках елементарного об'єму.

Припустимо, що: реологічні властивості рідини достатньо точно описуються степеневим законом; рідина є нестискною, а її рух – ламінарним і усталеним; втрати тиску на ефектах входу/виходу з канал відсутні; форма перерізу каналу та його розміри є сталими; течія є ізотермічною; відсутній теплообмін крізь стінку каналу та саморозігрів розплаву дисипацією; відсутнє проковзування полімеру на стінках каналу.

Визначимо дотичні сили на елементарному об'ємі, який виокремимо з попереднього довільним радіусом r (рис. 2). Рівняння рівноваги для цього об'єму: $F_{1\text{new}} - F_{2\text{new}} - F_3 + F_4 = 0$, де $F_{1\text{new}} = P(z)\pi(R^2 - r^2)$ і

 $F_{2\text{new}} = \left[P(z) + \frac{dP}{dz}dz\right]\pi \left(R^2 - r^2\right)$ – сили від нормальних напружень, спричинених гідростатичним тиском;

 $F_4 = \tau_{zo}|_{\rho = r} 2\pi R dz$ – сила від дотичних напружень між шарами рідини на відстані r від центра.

Рис. 1 – Модель течії неньютонівської рідини в циліндричному каналі капілярного віскозиметра

Рис. 2 – Сили, що діють на елементарний об'єм на відстані *r* від центра

Якщо позначити $A = \frac{dP}{dz} = \frac{\Delta P}{L}$, дотичне напруження на внутрішній поверхні нового елементарного

об'єму $\Phi_{cc}\Big|_{c=r} = \frac{Ar}{2}$, а зворотна реологічна залежність $\Gamma_{zc}(c) = \frac{dW_z(c)}{dc} = \sqrt[n]{\frac{\Phi_{zc}(c)}{K}} = \sqrt[n]{\frac{Ar}{2K}}$, де τ – дотичне напруження у розплаві, Па; K – коефіцієнт консистентності, сталий за заданої температури, Па · cⁿ; γ – швидкість зсуву розплаву, c⁻¹; n – показник степеня неньютонівської поведінки.

Проінтегрувавши цю залежність, визначимо швидкість потоку в циліндричному каналі на довільній відстані від його центра

$$W_{z}(\mathbf{c}) = \int_{c=R}^{c=c} \sqrt[n]{\frac{Ac}{2K}} d\mathbf{c} = \left| W_{z} \right|_{c=R} = 0 = \frac{1}{\frac{1}{n+1}} \sqrt[n]{\frac{Ac}{2K}} \left(R^{\frac{1}{n+1}} - c^{\frac{1}{n+1}} \right) = D - Bc^{\frac{1}{n+1}}, \text{ ge } B = \frac{1}{\frac{1}{n+1}} \sqrt[n]{\frac{Ac}{2K}} i D = \frac{1}{\frac{1}{n+1}} \sqrt[n]{\frac{Ac}{2K}} R^{\left(\frac{1}{n+1}\right)}.$$

Об'ємна витрата крізь циліндричний канал:

$$V_{z}(K) = 2p \int_{c=R}^{c=0} cW_{z}(c) dc = 2p \int_{c=R}^{c=0} c\left(D - Bc^{\frac{1}{n+1}}\right) dc = 2p \left[D\frac{R^{2}}{2} - \frac{B}{\left(\frac{1}{n+3}\right)}R^{\frac{1}{n+3}}\right] = \frac{pnR^{3}}{3n+1}\left(\frac{R\square P}{2LK}\right)^{\frac{1}{n+3}}$$

Розв'язком рівняння є функція $V_{\text{theor}} = f(n, K)$ (рис. 3).

Знайдемо *K* як функцію від *n* для кожного експерименту: $K = f_{onr}(n) = \min |f(K,n) - V_{exc}|$. На рис. 4 зображено чотири такі функції для чотирьох експериментів, взятих для прикладу. Точка їхнього перетину є дозволяє визначити реологічні параметри *n* і *K* для серії експериментів.

Нижче наведено програму оброблення даних капілярної віскозиметрії в пакеті MathCAD і приклад розрахунку для розплаву полістиролу загального призначення.

Експериментальні дані:	
Густина розплаву, кг/м ³	ρ0 := 870
Діаметр поршня, м	D := 0.00948
Довжина сопла, м	L := 0.008
Кількість вимірювань, шт.	Dosl := 4
Маса вантажів, кг	$M_1 := 2.87$ $M_2 := 4.49$ $M_3 := 5.69$ $M_4 := 6.69$
Час вимірювань, с	$\tau_1 := 600$ $\tau_2 := 600$ $\tau_3 := 600$ $\tau_4 := 600$
Діаметр отвора сопла, м	<i>d</i> := 0.0012
Маса продавленого розплаву, кг	$m_1 := 0.000052$ $m_2 := 0.000136$
	m_3 : = 0.000211 m_4 : = 0.00028

Рис. 3 – Графічне зображення функції $|V(n, K) - V_{e\kappa c}|$ $P_i = \frac{4M_i}{\pi D^2}$

Тиск перед соплом, Па

Рис. 4 – Графічне зображення функції $K = f_{\text{опт}}(n)$ $V_i = \frac{M_i}{\mathbf{c} \cdot \mathbf{\phi}}$ Витрата розплаву крізь сопло, м³/с

 $R = \frac{D}{2}$ Радіус отвора сопла, м

i =1..4

$$A_{i} := \frac{P_{i}}{L_{i}} \qquad fB(K,n,i) := \frac{1}{\frac{1}{n} + 1} \left(\frac{A_{i}}{2K}\right)^{\left(\frac{1}{n}\right)} \qquad fD(K,n,i) := \frac{1}{\frac{1}{n} + 1} \left[R^{\left(\frac{1}{n}+1\right)}\right] \left(\frac{A_{i}}{2K}\right)^{\left(\frac{1}{n}\right)}$$
$$fW_{Z} := fD(K,n,i) - fB(K,n,i) \cdot c^{\left(\frac{1}{n}+1\right)} \qquad fV(K,n,i) := \frac{pnR^{3}}{3n + 1} \left(\frac{RA_{i}}{2K}\right)^{\left(\frac{1}{n}\right)}$$

$$fW_{Z:} = fD(K,n,i) - fB(K,n,i) \cdot e^{\langle n \rangle} \qquad fV(K,n,i) := \frac{p \cdot n \cdot r}{3n+1} \left(\frac{2k\gamma}{2K}\right)$$

ICUCTENTHOCTI
$$K := 10 \qquad KO(n,i) := \operatorname{root}(fV(K,n,i) - V_i)$$

Коефіцієнт консистентності 10 Відстань між кривими (відшукати перетин кривих)

$$\begin{aligned} \operatorname{KOS1}(n) &\coloneqq \sqrt{\left| K0(n,1)^2 - K0(n,2)^2 \right|} &\operatorname{KOS2}(n) &\coloneqq \sqrt{\left| K0(n,1)^2 - K0(n,4)^2 \right|} &\operatorname{KOS3}(n) &\coloneqq \sqrt{\left| K0(n,1)^2 - K0(n,3)^2 \right|} \\ \operatorname{KOS4}(n) &\coloneqq \sqrt{\left| K0(n,2)^2 - K0(n,3)^2 \right|} &\operatorname{KOS5}(n) &\coloneqq \sqrt{\left| K0(n,2)^2 - K0(n,4)^2 \right|} &\operatorname{KOS6}(n) &\coloneqq \sqrt{\left| K0(n,4)^2 - K0(n,4)^2 \right|} \\ &\operatorname{KOS7}(n) &\coloneqq \sqrt{\left| K0(n,1)^2 - K0(n,2)^2 \right|} \end{aligned}$$

$$f$$
KOS (n) : = KOS1 $(n)^2$ + KOS2 $(n)^2$ + KOS3 $(n)^2$ + KOS4 $(n)^2$ + KOS5 $(n)^2$ + KOS6 $(n)^2$ + KOS7 $(n)^2$
Пошук мінімуму (найближчого розташування кривих *K-n* кожного експерименту)
 $n := 1$ $P := 0.503$ $P :=$ Minimize $(f$ KOS $,n)$ $n := P$ $i := 1..$ Dosl $K := 10$

$$\mathcal{K}(n, i) := \operatorname{root}\left(fV(\mathcal{K}, n, i) \cdot \operatorname{Vexper}_{i}, \mathcal{K}\right) \qquad \operatorname{KOST} := \frac{1}{Dosl} \sum_{i=1}^{i=Dosl} \mathcal{K}(n, i)$$

Визначені коефіцієнт консистентності та показник ступеня нен'ютонівської поведінки: $KOST = 1.759 \times 10^3$ n = 0.503

Епюра швидкостей у каналі сопла за визначеними реологічними параметрами:

$$fWzn(c) := \begin{vmatrix} fWz(c,KOST,n,1) & \text{if } c > 0 \\ fWz(-c,KOSt,n,1) & \text{otherwise} \end{vmatrix}$$

Епюра швидкостей у каналі, коли n = 1 (ньютонівська рідина) – для порівняння епюр *KOST*02: = *K*0(1,1)

Рис. 5 – Графік відстані між кривими на рис. 4 у квадратах

Висновки. Нова методика оброблення даних капілярної віскозиметрії дозволяє опрацьовувати декілька експериментів одночасно, є адекватною і дозволяє відокремити експерименти, які зроблені з похибками, оскільки результати для кожного експерименту відображається окремою кривою.

Перспективи подальших досліджень. Створення методики розрахунку співвідношення пружних і в'язких деформацій на основі моделі Гєнкі з метою моделювання формувальних інструментів для екструдування спіненого полістиролу.

Список використаної літератури

1. Michaeli, W. (2003), *Extrusion Dies for Plastics and Rubber*, Hancer/Gardner Publications, Inc., Cincinnati. Han, C. D. (1976), *Rheology in polymer Processing*, Academic press, New York, USA.